Free energy calculation of permeation through aquaporin-5




Bastien, David

Journal Title

Journal ISSN

Volume Title



The work of this paper continues upon the large area of research being done on aquaporins (AQPs). AQPs are proteins that take on the role of facilitating the transfer of substances, mainly water, across cell membranes. There are many different types of AQPs, with each of these highly selective proteins conducting only certain solutes, along with unique permeability rates. The permeation characteristics of aquaporins rely mostly on the residue hydrophobicity and steric restraints of the aromatic arginine (ar/R) region of the protein channel. The purpose of this paper is to analyze the structures of aquaporin-5 (AQP5) and aquaglycerolporin (Glpf), including a radius profile of the respective protein channels, and to compare them to permeation events using steered molecular dynamics (SMD) pulling simulations. Two in silico experiments are performed in order to achieve the free Energy landscape of a single water molecule permeating through the four channels of both Aqp5 and GlpF. The equilibrium free energy curves are calculated from the non-equilibrium, irreversible work measurements using the fluctuation-dissipation theorem (FDT) of Brownian dynamicis (BD). The free energy profiles are then compared and related to the structural profiles of AQP5 and GlpF. The change in free energy across the ar/R region in AQP5 is found to be reasonably larger than that of GlpF. The free energy profiles of AQP5 and GlpF agree with the diameter profile of the channels respectively. Furthermore, free energy calculations are computed for the permeation of Na+ and Cl- ions through the central pore of Aqp5, which provide some insight into the structural mechanisms of AQP5. The free energy barrier for ion transport through the central pore is found to be very large, peaking at around 11 Kcal/mol for chloride and 20 Kcal/mol for sodium.


This item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.


AQP5, aquaporin 5, free energy, GlpF, water channel



Physics and Astronomy