Novel Entropy for Enhanced Thermal Imaging and Uncertainty Quantification
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper addresses the critical need for precise thermal modeling in electronics, where temperature significantly impacts system reliability. We emphasize the necessity of accurate temperature measurement and uncertainty quantification in thermal imaging, a vital tool across multiple industries. Current mathematical models and uncertainty measures, such as Rényi and Shannon entropies, are inadequate for the detailed informational content required in thermal images. Our work introduces a novel entropy that effectively captures the informational content of thermal images by combining local and global data, surpassing existing metrics. Validated by rigorous experimentation, this method enhances thermal images’ reliability and information preservation. We also present two enhancement frameworks that integrate an optimized genetic algorithm and image fusion techniques, improving image quality by reducing artifacts and enhancing contrast. These advancements offer significant contributions to thermal imaging and uncertainty quantification, with broad applications in various sectors.