Shortest Path Problems on a Polyhedral Surface

dc.contributor.authorCook, Atlas F. IV
dc.contributor.authorWenk, Carola
dc.date.accessioned2023-10-25T14:25:27Z
dc.date.available2023-10-25T14:25:27Z
dc.date.issued2009-02
dc.description.abstractWe develop algorithms to compute edge sequences, Voronoi diagrams, shortest path maps, the Fréchet distance, and the diameter for a polyhedral surface. Distances on the surface are measured either by the length of a Euclidean shortest path or by link distance.
dc.description.departmentComputer Science
dc.description.sponsorshipThis work has been supported by the National Science Foundation grant NSF CAREER CCF-0643597.
dc.identifier.urihttps://hdl.handle.net/20.500.12588/2151
dc.language.isoen_US
dc.publisherUTSA Department of Computer Science
dc.relation.ispartofseriesTechnical Report; CS-TR-2009-001
dc.subjectpolyhedral surface
dc.subjectVoronoi diagram
dc.subjectshortest path map
dc.subjectFréchet distance
dc.subjectdiameter
dc.subjectlink distance
dc.subjectEuclidean shortest path
dc.titleShortest Path Problems on a Polyhedral Surface
dc.typeTechnical Report

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cook_Wenk_CS-TR-2009-001.pdf
Size:
399.32 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: