Design of a swarm of autonomous ground vehicles for use in remote sensing applications
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
As current technological trends are leading towards relatively small, cheap and powerful computational platforms that can support a multitude of sensors, systems of multiple smaller robots are becoming more cost effective than use of a single larger robot. Small, cheap and powerful are three key ingredients in enabling the development and deployment of larger swarms of robots. This thesis explores the concepts required for developing and deploying a swarm of autonomous ground vehicle (AGV) robots. The concepts investigated are communication, obstacle avoidance, navigation, path planning, formation planning, autonomous control, and task allocation. Each swarm robot concept is explored through comparison in the use of different instruments and methods to reach the end goal in creation and use of the system component. Verification of the need for these concepts in a multi-robot system is performed through simulation and experiments. Results from simulations and experiments provide a promising outlook for deployment of the robotic swarm on current wireless networks for long range experiments. Products of this thesis are the set of concepts that can be used to create and deploy an expandable system of heterogeneous robots for use in remote sensing applications, and software created to control two coordinator robots that were used to test the concepts.