Magnetoelectricity in Multi-Scale Composites and Application in Nanorobotics for Live Cell Manipulation

dc.contributor.advisorGuo, Ruyan
dc.contributor.advisorBhalla, Amar Singh
dc.contributor.authorBetal, Soutik
dc.contributor.committeeMemberTang, Liang
dc.contributor.committeeMemberNash, Kelly
dc.contributor.committeeMemberShadaram, Mehdi
dc.contributor.committeeMemberAgaian, Sos
dc.descriptionThis item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.
dc.description.abstractIn this research biomedical and sensor applications of magnetoelectric effect have been broadly explored using magnetoelectric composites. Firstly NiFe2O4/Pb(Zr0.52Ti0.48)O 3/NiFe2O4 layered bulk composite have been studied to achieve high magnetoelectric coefficient for their applications in brain magnetic field detection at room temperature. Magnetic sensors like SQUID (superconducting quantum interference device) nowadays are able to detect pico-Tesla magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application, but due to heavy liquid helium cooling and insulation requirements, the technique become quite inefficient in gaining high resolution measurement. At room temperature layered ME samples exhibit high magnetoelectric response in mV/cm.Oe range and hence can transform very low magnetic field into electric signal which can be measured even in femtovolts. Moreover temperature and a.c. frequency dependent studies were done to extensively characterize the layered ME sample for sensor application. Secondly core-shell magnetoelectric nanoparticles (CSMEN) have been fabricated, characterized and their interaction with biological cell in presence of a.c. and d.c. field have been thoroughly analyzed. A magnetically controlled elastically driven electroporation phenomenon, or Magneto-Elasto- Electroporation (MEEP), is discovered while studying interactions between core-shell magneto-electric nanoparticles (CSMEN) and biological cells in the presence of an AC magnetic field. In this research MEEP effect was observed via a series of in-vitro experiments using core (CoFe2O4)-shell (BaTiO3 ) structured magnetoelectric nanoparticles and human epithelial cells (HEP2). Cell electroporation phenomenon and its correlation with the magnetic field modulated CSMEN have been elaborately studied. Potential of CSMEN for application in targeted single cell electroporation have been confirmed by analysing crystallographic phases, multiferroic properties of the fabricated CSMEN , influences of DC and AC magnetic field on the CSMEN and cytotoxicity tests. We also report the mathematical formalism to quantitatively describe the phenomena. The reported findings provide the basis of the underlying MEEP mechanism and demonstrate the utility of CSMEN as electric pulse generating nano-probe in cell electroporation experiments for the potential application towards accurate and efficient targeted cell permeation as well as drug delivery. Thirdly, experiments of fabricated magnetoelectric nanocomposites with biological cells in controlled boundary condition under fluctuating and biased magnetic field excitation revealed the smart nanorobotics characteristics of the nanostructure to achieve remote controlled dynamically targeted live cell manipulation. A remotely controlled dynamic process of manipulating targeted biological live cells using fabricated core-shell magnetoelectric nanocomposites have been fabricated, which comprises of single crystalline ferromagnetic cores (CoFe2O4) coated with crystalline ferroelectric thin film shells (BaTiO3). These nanocomposites are demonstrated as a unique family of inorganic magnetoelectric nanorobots (MENRs), controlled remotely by applied a.c. or d.c. magnetic fields, to perform cell targeting, permeation, patterning and transport. MENRs performs these functions via localized electric periodic pulse generation, local electric-field sensing, or thrust generation and acts as a unique tool for remotely controlled dynamically targeted cellular manipulation. Under a.c. magnetic field excitation (50 Oe, 60 Hz), the MENR acts as a localized periodic electric pulse generator and can permeate a series of misaligned cells, while aligning/patterning them to an equipotential mono-array. Under a.c. magnetic field (40 Oe, 30 Hz) excitation, MENRs can be dynamically driven to a targeted cell, avoiding untargeted cells in the path, irrespective of cell density. D.C. magnetic field (--50 Oe) excitation causes the MENRs to act as thrust generator and exerts motion in a group of cells. Visualization of magnetoelectricity at nanoscale and its application in dynamically targeted live cell manipulation have been presented in this research.
dc.description.departmentElectrical and Computer Engineering
dc.format.extent150 pages
dc.subject.classificationElectrical engineering
dc.subject.classificationMaterials science
dc.subject.classificationBiomedical engineering
dc.titleMagnetoelectricity in Multi-Scale Composites and Application in Nanorobotics for Live Cell Manipulation
dcterms.accessRightspq_closed and Computer Engineering of Texas at San Antonio of Philosophy


Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
7.26 MB
Adobe Portable Document Format