AI Federated Learning for Face Recognition at the Edge

Date

2022

Authors

Afrin, Sadia

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Deep learning based face recognition models require massive amount of centralized data to train the model efficiently. For image classification tasks, the centralized data can be utilized from public database. However, for face recognition it is prohibited to access private data. Due to this privacy concern, face recognition under privacy protocol has been one of the most difficult tasks in the era of computer vision. Federate learning which is a form of machine learning model addresses the issue. It helps to train the model with multiple devices or clients without allowing them share the data. In this work, using federated learning we improved both the personalized and generalized model.

Description

This item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.

Keywords

Facial recognition, Deep learning, Image classification

Citation

Department

Computer Science