Integration of machine learning and mathematical programming methods into the biomass feedstock supplier selection process

Date

2014

Authors

Mirkouei, Amin
Haapala, Karl R.

Journal Title

Journal ISSN

Volume Title

Publisher

DEStech Publications, Inc.

Abstract

Recent concerns over the use of and reliance on fossil fuels have stimulated research efforts in identifying, developing, and selecting alternative energy sources. Biofuels represent a promising replacement for conventional fuels for heating and mobility applications, however, variability in the quality and availability of biomass feedstocks greatly affect the utility of biofuels due to the impact on cost and life cycle environmental performance. Thus, methods for mitigating these potential impacts are needed when selecting biomass feedstock suppliers. In the research herein, the selection of the best supplier is investigated for a biomass supply chain (BSC) network by including both qualitative and quantitative factors. Most existing supplier-selection methods consider four steps: (1) Problem formulation, where Decision-Tree Analysis is applied as a qualitative method for defining the type of biomass feedstock materials for biofuel production, (2) Criteria definition, (3) Preevaluation of qualified suppliers, which employs the Support Vector Machine (SVM) method, and (4) Final selection. Integration of machine learning (ML) techniques and a mathematical programming model is undertaken with this method to select the most appropriate feedstock suppliers. It is shown that integrating ML and mathematical programming methods offers a promising approach to supplementing existing supplier selection methods for biomass-to-biofuel supply chains.

Description

Paper presented at the Proceedings of the 24th International Conference on Flexible Automation & Intelligent Manufacturing, held May 20-23, 2014 in San Antonio, Texas, and organized by the Center for Advanced Manufacturing and Lean Systems, University of Texas at San Antonio
Includes bibliographical references

Keywords

Feedstock--Management--Mathematical models, Biomass chemicals, Machine learning, Business logistics

Citation

Department