Stabilized and Galerkin Least Squares Formulations

dc.contributor.authorRanjan, R.
dc.contributor.authorFeng, Y.
dc.contributor.authorChronopoulos, A. T.
dc.date.accessioned2023-11-02T15:06:46Z
dc.date.available2023-11-02T15:06:46Z
dc.date.issued2016-07-17
dc.description.abstractWe study incompressible fluid flow problems with stabilized formulations. We introduce an iterative penalty approach to satisfying the divergence free constraint in the Streamline Upwind Petrov Galerkin (SUPG) and Galerkin Least Squares (GLS) formulations, and prove the stability of the formulation. Equal order interpolations for both velocities and pressure variables are utilized for solving problems as opposed to div-stable pairs used earlier. Higher order spectral/hp approximations are utilized for solving two dimensional computational fluid dynamics (CFD) problems with the new formulations named as the augmented SUPS (ASUPS) and augmented Galerkin Least Squares (AGLS) formulations. Excellent conservation of mass properties are observed for the problem with open boundaries in confined enclosures. Inexact Newton Krylov methods are used as the non-linear solvers of choice for the problems studied. Faithful representations of all fields of interest are obtained for the problems tested.
dc.description.departmentComputer Science
dc.identifier.urihttps://hdl.handle.net/20.500.12588/2209
dc.language.isoen_US
dc.publisherUTSA Department of Computer Science
dc.relation.ispartofseriesTechnical Report; CS-TR-2016-006
dc.subjectASUPS/AGLS formulations
dc.subjectspectral methods
dc.subjectstabilized methods
dc.subjectincompressible flow
dc.subjectInexact Newton Krylov Method
dc.titleStabilized and Galerkin Least Squares Formulations
dc.typeTechnical Report

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ranjan_et_al_CS-TR-2016-006.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: