SSL4EO-L: Datasets and Foundation Models for Landsat Imagery

dc.contributor.authorStewart, Adam J.
dc.contributor.authorLehmann, Nils
dc.contributor.authorCorley, Isaac A.
dc.contributor.authorWang, Yi
dc.contributor.authorAit Ali Braham, Nassim
dc.contributor.authorSehgal, Shradha
dc.contributor.authorRobinson, Caleb
dc.contributor.authorBanerjee, Arindam
dc.date.accessioned2024-04-16T16:43:52Z
dc.date.available2024-04-16T16:43:52Z
dc.date.issued2024-04-02
dc.description.abstractLandsat: Science, Petabytes, and SSL: [Figure] • Landsat's scientific significance and extended coverage • Petabytes of accessible Landsat imagery • Challenge: diverse sensors, varied wavelengths, and the lack of pre-trained models • Problem: scarcity of large labeled datasets • Solution: self-supervised learning (SSL)
dc.description.departmentElectrical and Computer Engineering
dc.identifier.urihttps://hdl.handle.net/20.500.12588/6392
dc.language.isoen
dc.publisherUTSA Graduate School
dc.titleSSL4EO-L: Datasets and Foundation Models for Landsat Imagery
dc.typePoster

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25_Isaac_Corley.png
Size:
2.52 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: