On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order




Benkerrouche, Amar
Souid, Mohammed Said
Stamov, Gani
Stamova, Ivanka

Journal Title

Journal ISSN

Volume Title



In this manuscript we introduce a quadratic integral equation of the Urysohn type of fractional variable order. The existence and uniqueness of solutions of the proposed fractional model are studied by transforming it into an integral equation of fractional constant order. The obtained new results are based on the Schauder’s fixed-point theorem and the Banach contraction principle with the help of piece-wise constant functions. Although the used methods are very powerful, they are not applied to the quadratic integral equation of the Urysohn type of fractional variable order. With this research we extend the applicability of these techniques to the introduced the Urysohn type model of fractional variable order. The applicability of the new results are demonstrated by providing Ulam–Hyers stability criteria and an example. Moreover, the presented results lead to future progress and expansion of the theory of fractional-order models, as well as of the concept of entropy in the framework of fractional calculus. Further, an example is constructed to demonstrate the reasonableness and effectiveness of the observed results.



fractional derivative, variable-order, fixed-point theorem, quadratic integral equation, piece-wise constant functions, Urysohn-type integral equations, Ulam–Hyers stability


Entropy 24 (7): 886 (2022)