Growth and Structural Characterization of Doped Polymorphic Crystalline MgPc as an Organic Semiconductor

Date
2020-06-08
Authors
Hamui, Leon
Sánchez-Vergara, María Elena
Sánchez-Ruiz, Rocio
Álvarez-Toledano, Cecilio
Reyes-Rodriguez, Jose Luis
Ponce, Arturo
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The doping and crystallization of the molecular semiconductor formed from the magnesium phthalocyanine (MgPc) and 1-(4-Methoxyphenyl)-2,2,6,6-tetramethyl-5-phenylhepta-3,4-dienedioic (MTPDA) acid was carried out in this work. The crystals obtained were characterized by using transmission electronic microscopy (TEM), Raman spectroscopy, and X-Ray diffraction (XRD), to later evaluate their optical behavior. Raman, IR, and UV–Vis results indicate that the MgPc has been doped with the MTPDA. A uniform material layer with particles is observed as a result of a two-stage process, nucleation and growth. The polycrystalline films are constituted by a mixture of ? and ? phases with crystalline sizes of ~7 nm, 14 nm, and 20 nm average sizes. The films exhibit a preferred orientation along the [001]. The MTPDA doping does not have an important effect on the molecule planar distances indicating that the MTPDA molecule is among the equivalent MgPc plane direction. A transparent region with a minimum at 483 nm is observed, also a B-band at 337 nm and a Q-band transition with a high-energy peak around 639 nm, and a low energy peak around 691 nm.

Description
Keywords
organic semiconductors, metallophthalocyanine, thin films, Raman spectroscopy, structural analysis
Citation
Crystals 10 (6): 495 (2020)
Department
Physics and Astronomy