Ferroics and Multiferroics for Dynamically Controlled Terahertz Wave Propagation

Date
2017
Authors
Dutta, Moumita
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The terahertz (THz) region of electromagnetic spectra, referred roughly to the frequency range of 100 GHz (0.1 THz) to 10 THz, is the bridging gap between the microwave and infrared spectral bands. Previously confined only to astronomy and analytical sciences due to the unavailability of technology, with the recent advancements in non-linear optics, this novel field has now started emerging as a promising area of research and study. Considerable efforts are underway to fill this 'THz gap' by developing efficient THz sources, detectors, switches, modulators etc.

Be it any field, to realize this regime as one of the active frontiers, it is essential to have an efficient control over the wave propagation. In this research, functional materials (ferroics/multiferroics) have been explored to attain dynamic control over the THz beam propagation. The objective is to expand the horizon by enabling different family of materials to be incorporated in the design of THz modulators, exploiting the novel properties they exhibit.

To reach that goal, following a comprehensive but selective (to dielectrics) review on the current-status of this research field, some preliminary studies on ferroic materials have been performed to understand the crux of ferroism and the novel functionalities they have to offer. An analytical study on microstructural and nanoscale properties of solid-solution ferroelectric Pb(Zr0.52Ti 0.48)O3 (PZT) and composite bio-ferroic seashells have been performed to elucidate the significance of structure-property relationship in intrinsic ferroelectrics. Moving forward, engineered ferroelectricity has been demonstrated. A precise control over fabrication parameters has been exploited to introduce oxygen-vacancy defined nanoscale polar-domains in centrosymmetric BaZrO3. Realizing that structure-property relationship can significantly influence the material properties and therefore the device performance, models for figure of merit analysis have been developed for an effective application-based material selection. Lastly, perceiving that THz wave generation involves non-linear optics, upconversion in a co-doped ferroic system (Sr0.60Ba 0.40Nb2O6: Mo, Cr) has also been explored as part of the preliminary set of investigations.

After the initial studies, a family of oxide materials (0.7Sr(Al 1/2Nb1/2)O3-0.3NdGaO3, LiNbO3 , (SrBa)Nb2O6, BiFeO3) have been studied and characterized to evaluate their suitability for THz modulator designs. Based on these elaborate studies, materials have been selected for the modulator designs presented in this dissertation. A significant control over THz wave propagation has been achieved by engineered polarization-distribution in ferroic materials. THz attenuators, designed out of a conduit comprising of periodically placed x and z-cut LiNbO3 crystalline slabs has been configured as a tristate switch by modulating the amplitude of the traversing THz wave by altering the angle of incidences. Advancing further, a dynamic control over the phase of the incident THz beam has been demonstrated by designing a low frequency piezoresonance defined THz phase-modulator, employing single crystalline LiNbO3 thin film system.

Though a phase modulation as high as 180° has been obtained using piezoresonance, for applications demanding non-contact mode of excitations, alternative approaches involving light and magnetic field, have been developed. Magnetoelastoelectric coupling in core-shell nano-particles has been taken advantage of, to achieve dynamically tunable magnetic-field direction defined amplitude/phase mode-selective modulation of THz beam. For its realization, biphasic multiferroic nanocomposites, comprised of a ferromagnetic CoFe 2O4 core and a ferroelectric BaTiO3 shell, have been fabricated. Following that, a light-induced THz amplitude modulation is demonstrated, where Pb(FeNb)O3-NiZnFe2O4 excited with 800 nm femtosecond pulses amplifies the propagating beam.

Realizing the considerable influence, ferroics and multiferroics can have on THz wave propagation, they have been employed to develop novel metamaterial devices empowered by dynamic tunability. To attain the tunability, the design incorporates the novelty of ferroics in the patterning of the metasurfaces. In this research, the polarization induced surface charge density of ferroic materials rather than the conductivity of the metals has been exploited to achieve the resonances. After detailed analysis of the finite element models developed to evaluate the mechanism of the phenomena and the effectiveness of the device structures, optimal material and device configuration has been realized. The metamaterial resonance condition empowered by dynamic tunability has been achieved without using any conductor (metal), rather by using ferroelectric PVDF for the pattering in an optimized configuration of a double split ring resonator. Its fabrication process is also discussed.

Description
This item is available only to currently enrolled UTSA students, faculty or staff.
Keywords
Active Metamaterials, Dielectrics, Dynamic Modulation, Ferroics, Multiferroics, Terahertz
Citation
Department
Electrical and Computer Engineering