A complex-variable finite element method-based inverse methodology to extract constitutive parameters using experimental data

dc.contributor.authorRamirez-Tamayo, Daniel
dc.contributor.authorSoulami, Ayoub
dc.contributor.authorGupta, Varun
dc.contributor.authorRestrepo, David
dc.contributor.authorMontoya, Arturo
dc.contributor.authorNickerson, Ethan
dc.contributor.authorRoosendaal, Timothy
dc.contributor.authorSimmons, Kevin
dc.contributor.authorPetrossian, Gayaneh
dc.contributor.authorMillwater, Harry
dc.date.accessioned2023-05-23T16:56:55Z
dc.date.available2023-05-23T16:56:55Z
dc.date.issued2022-05-15
dc.description.abstractThis paper presents the use of full-field kinematic measurements obtained using the digital image correlation (DIC) procedure and load–displacement data to determine constitutive material properties by solving an inverse finite element optimization problem. A key ingredient in the proposed approach is computing accurate sensitivities with respect to the unknown parameters. These sensitivities were used to solve the optimization problem using an accurate, efficient, gradient-based method, and were computed using the complex-variable finite element method, ZFEM. The use of ZFEM’s gradients to inversely determine material properties is demonstrated with two examples. First, the elastic–plastic material properties of DP-590 steel are obtained using a tensile test specimen. Second, the cohesive material parameters of an adhesive are determined using a double cantilever beam test. A significant outcome of this paper is that the use of a weighted residual formulation of the interfacial strain fields and the load–displacement data within the optimization procedure provides better estimates of the constitutive properties than using only the load–displacement data. This technique minimizes the relative error in both the strain fields and the load–displacement curve, which is important to obtain accurate interfacial properties.en_US
dc.description.departmentMechanical Engineeringen_US
dc.description.departmentCivil and Environmental Engineering, and Construction Management
dc.description.sponsorshipU.S. Department of Energy - EERE, Vehicle Technology Officeen_US
dc.identifier.citationRamirez-Tamayo, D., Soulami, A., Gupta, V., Restrepo, D., Montoya, A., Nickerson, E., . . . Millwater, H. (2022). A complex-variable finite element method-based inverse methodology to extract constitutive parameters using experimental data. International Journal of Solids and Structures, 243, 111545. doi:https://doi.org/10.1016/j.ijsolstr.2022.111545en_US
dc.identifier.issn1879-2146
dc.identifier.otherhttps://doi.org/10.1016/j.ijsolstr.2022.111545
dc.identifier.urihttps://hdl.handle.net/20.500.12588/1850
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectcomplex-variable finite element methoden_US
dc.subjectinverse methodsen_US
dc.subjectAbaqusen_US
dc.subjectUELen_US
dc.subjectautomatic differentiationen_US
dc.titleA complex-variable finite element method-based inverse methodology to extract constitutive parameters using experimental dataen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ramirez-Tamayo 2022 - A complex-variable finite element method-based inverse methodology to extract constitutive parameters using experimental data.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: