Teachers’ Engineering Design Self-Efficacy Changes Influenced by Boundary Objects and Cross-Disciplinary Interactions
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
As part of a larger ongoing NSF-REE-funded project focused on postsecondary maker identity within a university makerspace context, this paper reports on ten in-/pre-service teachers’ engineering design self-efficacy changes after participating in a semester-long makerspace experience at a large Hispanic-serving university in the Southwestern United States. The aim of this part of the project is to discover specific learning models that involve both STEM university students and in-/pre-service teachers in order to develop teamwork, self-efficacy, communication, and identity formation in the maker environment. The theoretical lens of boundary objects (Star & Griesemer, 1989) and cross-disciplinary collaboration (Gorman, 2010) are used to examine how specific learning models can influence change in engineering design self-efficacy. This paper presents the details of the procedural context and learning models integrated within a graduate-level educational technology course, reports on the pre-/post-test results from the Engineering Design Self-Efficacy survey instrument, and discusses implications for engineering education and engaging teachers in authentic maker integration within K-12 educational contexts.
Description
Keywords
Citation
Department
Interdisciplinary Learning and Teaching
Engineering Education