Controller Design and Stability Analysis for Some Linear Systems Using Pulse-Width-Modulation

Date

2019

Authors

Ortega, Eric Joseph

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Digital control is a branch of control theory that uses a computer processor to control and drive a continuous-time system so that it operates in a desirable way over time. Accuracy, flexibility, performance, and low cost have led to an increased usage of digital controllers.

Digitally controlled systems require digital-to-analog (D/A) and analog-to-digital (A/D) converters to translate signals between the plant and digital controller. D/A conversion is often accomplished using Zero-Order-Hold (ZOH), but another method of D/A conversion can be performed using Pulse-Width-Modulation (PWM). PWM based control systems have gained much attention due to their versatility and usage in many practical applications ranging from household appliances to jet engines. Stability analysis of a control system is a highly studied topic, and PWM based control systems present challenges due to the nonlinearities introduced by the discontinuous PWM signal.

This thesis is focused on presenting a new Lyapunov stability analysis for some systems under PWM control. Different from the existing results, the proposed procedure is developed based on Zero-Order-Hold (ZOH), yielding a sufficient condition for the switching period of the PWM signal. The effectiveness of the proposed result will be demonstrated in application to a group of linear systems with simulations results.

Description

This item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.

Keywords

Controls, Lyapunov, Pulse-width-modulation, PWM, Stability, Zero-order-hold

Citation

Department

Electrical and Computer Engineering