Analysis and simulation of power mismatch control in grid connected PV system with N-port converter

dc.contributor.advisorKrishnaswami, Hariharan
dc.contributor.authorAbdul Kader, Azas Ahamed Rifath
dc.contributor.committeeMemberAkopian, David
dc.contributor.committeeMemberCao, Yongcan
dc.descriptionThis item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.
dc.description.abstractIn recent years, there have been international commitments to reduce emissions associated with conventional energy were made. Renewable energy has been gaining ground, and is seen to occupy a prominent place in the global power generation. In this context, solar photovoltaic generation systems have the opportunity to be as much as suitable to produce electrical energy very close to the electric loads. Power electronics forms a major role in connecting PV systems into grid. Multilevel converters have been increasingly used in these systems to take care of high voltage levels and reduced harmonic distortion. In this thesis, power mismatch in N-port converter system that consists of a dual active bridge (DAB) dc-dc converter and a multilevel cascaded H-bridge dc-ac inverter is analyzed, modelled and simulated with in LabView ® and Simulink®. The d-q axis current control method is developed and simulation results are presented. This control design is built to control the grid current and Capacitor voltage balancing is simulated in Matlab®/Simulink® and LabView ® by using the average model approach. Additionally, Pulse Width Modulation (PWM) techniques for H-bridge and cascaded H-bridge have been analyzed and modelled in LabView®.
dc.description.departmentElectrical and Computer Engineering
dc.format.extent72 pages
dc.subjectDual active bridge
dc.subjectRenewable energy
dc.subject.classificationElectrical engineering
dc.subject.lcshPhotovoltaic power systems -- Computer simulation
dc.subject.lcshPhotovoltaic power systems -- Design and construction
dc.subject.lcshElectric current converters -- Computer simulation
dc.subject.lcshElectric power distribution -- Computer simulation
dc.titleAnalysis and simulation of power mismatch control in grid connected PV system with N-port converter
dcterms.accessRightspq_closed and Computer Engineering of Texas at San Antonio of Science


Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
1.84 MB
Adobe Portable Document Format